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)is study examines the shear-relative rainfall spatial distribution of tropical cyclones (TCs) during landfall based on the 19-year
(1998–2016) TRMM satellite 3B42 rainfall estimate dataset and investigates the role of upper-tropospheric troughs on the rainfall
intensity and distribution after TCs make a landfall over the six basins of Atlantic (ATL), eastern and central Pacific (EPA),
northwestern Pacific (NWP), northern Indian Ocean (NIO), southern Indian Ocean (SIO), and South Pacific (SPA). )e results
show that the wavenumber 1 perturbation can contribute∼ 50% of the total perturbation energy of total TC rainfall. Wavenumber
1 rainfall asymmetry presents the downshear-left maxima in the deep-layer vertical wind shear between 200 and 850 hPa for all the
six basins prior to making a landfall. In general, wavenumber 1 rainfall tends to decrease less if there is an interaction between TCs
and upper-level troughs located at the upstream of TCs over land. )e maximum TC rain rate distributions tend to be located at
the downshear-left (downshear) quadrant under the high (low)-potential vorticity conditions.

1. Introduction

Landfalling tropical cyclones (TCs) can bring strong winds
and heavy precipitation, which cause tremendous damage to
the affected region [1]. Besides, flash flooding and landslides
associated with long-duration rainfall of landfalling TCs
have been the predominant causes of death all over the world
[2]. )e devastated regions are largely determined by the
distribution of rainfall in landfalling TCs [3]. Skillfully
forecasting the locations of extreme rainfall from TCs in
advance is therefore urgently important in disaster miti-
gation and remains a highly challenging task [4, 5].

Earlier studies revealed that the mean rain rate in the TC
eyewall increased as the storm intensified by using airborne
radar datasets. Marks [6] showed that Hurricane Allen
(1980) exhibited an azimuthal mean rain rate greater than

11mm h−1 in the eyewall, which was six times more than
that within a radius of 111 km of mature Allen’s center.
Burpee and Black [7] found that the eyewall of Hurricane
Alicia (1983) became circular as the maximum low-level
winds approached 50m s−1, while a second eyewall had
shaped outside the original eyewall when the minimum
central surface pressure dropped to 970 hPa.

However, the TC rainfall distribution can vary signifi-
cantly from nearly axisymmetric to asymmetric under the
influences of the storm dynamics and its environment over
the open ocean. Asymmetries in TC circulations can be
mainly induced by the effects of the storm motion [8–10],
environmental deep-layer vertical wind shear (VWS)
[11–19], and environmental flows interactions with the
storm [20–24]. )e rainfall maximum within the inner core
region is generally located in down-motion flanks, which
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results from the friction-induced asymmetric boundary
layer convergence, particularly to the right of motion [8, 11].
)e rainfall front maxima shifted to the front-right as the
storm translation speed increased in North Atlantic or
North Indian basin TCs composite by using satellite-based
observations [10, 25]. With satellite data from the Tropical
Rainfall Measuring Mission (TRMM), the TC rainfall was
depicted as the sum of an azimuthal mean (or a wavenumber
0) component and a significant spatial asymmetric vari-
ability (or a series of lower-wavenumber components) [16].
)ough the dominant wavenumber 1 asymmetry is ob-
served, some studies [18, 26] have suggested that higher
wavenumbers (>1) perturbations may also have potentially
significant contributions using the Fourier decomposition
method. For instance, Zhu et al. [26] documented that the
energy from wavenumbers 1 to 6 contributed a large amount
of energy to the total perturbation field of potential vorticity
in a numerical modeling study, while Chen et al. [18] also
found that though wavenumber 1 is dominant, wavenumber
2 rainfall asymmetry still contributes half of the amplitude of
wavenumber 1 asymmetry. Pei and Jiang [27] found that the
maximum motion-relative precipitation asymmetry is
generally located down-motion but shifts cyclonically after
adding the components of wavenumbers 2 through 6 to
wavenumber 1. Besides, they found that the maximum
rainfall became pronounced at the front-left flank for
tropical storms and front-right for major TCs. )e TC
motion is mainly determined by the steering flow that is
affected by VWS [28]. )e rainfall spatial distribution as-
sociated with VWS was examined both observationally and
numerically. )e results showed that VWS was a more
dominant factor than the storm motion in producing
downshear and left-of-shear precipitation or convection
asymmetry when VWS is greater than 10ms−1, especially for
wavenumber 1 component [11, 15, 17–19, 27, 29]. Moreover,
the rainfall asymmetries decreased with increasing TC in-
tensity [16, 18].

Asymmetries in the TC rainfall associated with land-
falling can be modulated by not only VWS [30–34], but also
some other factors, such as nonuniform surface features
including land–sea contrast and local topographic effect
[31, 32, 34–39] and interaction between TCs and synoptic
weather systems [38, 40, 41]. In general, the landfalling TCs
regularly had an asymmetry with a downshear to down-
shear-left rainfall maximum near the coastal regions, which
is consistent with the studies for TCs over the ocean
[3, 19, 42]. Yu et al. [30] found that the asymmetric rainfall
maxima were more frequently located upshear and onshore
in weak VWS environments. In fact, the effects of VWS and
synoptic environment on TC rainfall asymmetry are not
independent. )e VWS with varying magnitude and di-
rection promotes a different impact on TC rainfall or
convection. Wingo and Cecil [43] noted that strong westerly
shear was likely to form more asymmetric rainfall patterns
than those of strong easterly shear. Some studies found that
the dry air intruded to the right side of the shear vector was
more adverse to the TC symmetric circulation
[21, 38, 44, 45]. Xu et al. [42] presented that the rainfall
percentage towards the right quadrant relative to the

coastline would exhibit an obvious increase in prelandfall
TCs near landfall in the eastern part of USA, which might be
induced by the northward recurving of the storm towards
the coast where the land–sea roughness gradient is present.
However, TC rainfall enhancement induced by topographic
effect was not evident in other landfalling TC studies
[32, 42]. Feng and Shu [37] showed that TC experienced a
decrease in rainfall intensity during its landfall due to the
cutting-off of energy and moisture from the ocean. In
contrast, TC rainfall redistribution can be promoted by the
interaction between a TC and baroclinic systems. As a
midlatitude trough approaches landfalling TCs at the eastern
part of USA from the northwest, potential vorticity redis-
tribution through diabatic heating process acts to enhance
the downstream of the TCs; Hurricane Sandy (2012) is such
an example [41].

)e overall goal of this study is to investigate the impacts
of upper-tropospheric troughs on the asymmetric rainfall
distribution and intensity during the life cycle (off-shore,
during, and after landfall) of TCs making landfall from basin
to basin with the Fourier decomposition method. Section 2
provides a description of the data and methods applied in
this study. )e shear-relative rainfall distribution and the
effects of the upper-level trough on the rainfall intensity and
asymmetric rainfall distribution are presented in Section 3.
)e conclusions are summarized in Section 4. Using a large
sample of satellite-derived rain rates data set, we attempt to
quantify asymmetry of the global landfalling TC precipi-
tation with respect to the upper-level trough.

2. Data and Methodology

2.1. Data. )e rainfall estimates taken from 19-year
(1998–2016) TRMM 3B42 version 7 dataset are used in this
study since 3B42 dataset could provide quite a reasonable
rainfall pattern in landfalling TCs when compared with the
gauge data or radar estimates [46–49]. TRMM 3B42 has a
three-hourly temporal resolution and 0.25° by 0.25° spatial
resolution, covering the globe from 50°S to 50°N.

)e TCs best-track data, including maximum sustained
wind speed and storm center location, are provided by the
Joint Typhoon Warning Center (JTWC) and the National
Hurricane Center (NHC). Six TC-prone basins are included
in this study: Atlantic (ATL), eastern and central Pacific
(EPA), northwestern Pacific (NWP), northern Indian Ocean
(NIO), southern Indian Ocean (SIO), and South Pacific
(SPA).

)e European Center for Medium-Range Weather
Forecasts interim reanalysis (ERA-Interim; Dee et al.
[50, 51]) with a horizontal grid spacing of 0.25° × 0.25° and a
six-hour interval output is used to calculate the environ-
mental vertical wind shear that is defined as the difference
between the averaged wind vectors at the 850 and 200 hPa
levels. Following the approach used by prior studies [52–54],
the horizontal wind vectors are averaged within a ring of
500–750 km from the TC center to avoid the influence of the
storm’s circulation as much as possible.

Many previous studies have utilized the potential vor-
ticity (PV) to investigate the TC–trough interactions
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[20, 41, 55, 56], suggesting that an upper-tropospheric
trough (characterized by PV anomaly) may play a key role in
the TC development [55, 57]. While several studies have
documented that TC–trough interaction favors intensifi-
cation [56, 58], troughs could be unfavorable for TC in-
tensification if the environmental wind shear is increased by
a trough [59]. To evaluate the effects of different troughs on
TCs developments, upper-tropospheric PV anomaly was
used as a parameter to quantify the characteristics of troughs
by Fischer et al. [55]. )ey used a simple objective technique
to assess if a TC was interacting with an upper-tropospheric
PV anomaly. Following Fisher et al.’s study, we aim to clarify
the effects of upper-tropospheric trough on the asymmetric
rainfall distribution during the life cycle of landfalling TCs in
different basins. )e 350 K isentropic surface PV anomaly is
used to assess whether TCs are embedding with the upper-
level trough or low system in this study. )e base state used
to calculate the anomalies is a 30-day mean, centered on the
TC time. If a PV anomaly with a maximum magnitude
greater than 0.5 (less than −0.5) PVU in north (south)
hemisphere exists anywhere within 500 km from the TC
center and the maximum PV anomaly is located at the
upshear side of the TC, the TC is considered to be embedded
in an upper-level trough environment, hereafter denoted as
“high-PV.” In contrast, there is a less efficient TC–trough
configuration, hereafter denoted as “low-PV.”

Considering that the TC translation speed might vary
significantly and following Xu et al.’s (2014) definition, we
define four subregions on the basis of the proximity to the
coast in this study, including (1) off-shore TCs, still far away
from the coast (300–700 km), (2) preland TCs, close to
landfall (0–300 km), (3) high-PV TCs after landfall (−300 to
0 km, in-land) embedded in an upper-level trough envi-
ronment, and (4) low-PV TCs after landfall (−300 to 0 km)
under low-PV environmental condition. Table 1 lists the
landing TC six-hourly samples in each subregion over the six
basins during 1998–2016. As expected, the samples in all the
subregions over NWP are much larger than other basins,
since there are much more landfalling TCs over NWP.
Alternatively, in-land TCs under high-PV condition are less
than those under low-PV conditions for all the basins.

2.2. Rainfall Analysis Method. )e TC rainfall distribution
was analyzed using the fast Fourier transform (FFT) in this
study. TRMM 3B42 rainfall estimates were first converted
into a polar coordinate system using the TC center as the
origin. )en, the spatial asymmetries of rainfall were ex-
amined by binning rainfall in 10 km-wide annuli from the
TC center to a 500 km radius. In each annulus, the Fourier
coefficients were computed using the following equations
[60]:
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where R (i) is each of the individual rain rate estimates and n
is the wavenumber. N is set to be 128 in this study, which is
the highest wavenumber that we can resolve in this Fourier
decomposition. i is the index of each point. )en, the rainfall
asymmetric component of wavenumber n, Rn, can be rep-
resented by
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2πni

N
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Similar to [27], Rn is not divided by the azimuthal mean
rain rate (wavenumber 0, R0) as used in Lonfat et al. [16].)e
variations of amplitudes of wavenumber 1–5 rain rate
components and their amplitudes relative to the sum of
wavenumbers 1–5 rain rates within the radius of 500 km
from TC center were also calculated for the four subregions.

3. Results

3.1. Azimuthal Mean Rain Rate. Before comparing the
rainfall asymmetry usually represented by the decomposed
field of wavenumber 1, we examined how the azimuthal
mean rain rates distribute radially among different basins to
understand the relative amplitude of the composited field to
the mean rain rate for different TC subregions. Over the
open ocean (Figure 1(a)), the azimuthal mean rain rates are
the largest for TCs in the SIO in the inner core region,
followed by NWP, ATL, SPA, NIO, and EPA in a descending
order. )e locations of the peak rain rates for SIO, NWP,
ATL, SPA, NIO, and EPA are about 40, 40, 50, 50, 30, and
40 km from the storm center with the magnitudes
of∼ 4.8–5.2mm·hr−1, receiving about three times higher
rainfall than the outer region (100–300 km), respectively.
)is result is similar to the recent satellite composites by
Ankur et al. [10]. )e peak azimuthal mean rain rates for six
basins experience a slight enhancement during the course of
TCs approaching the coast and making landfall with the rain
rate of∼ 5.0–5.8mm·hr−1 (Figure 1(b)). )is can be
explained by the fact that the surface frictional convergence
between the land and ocean in landfalling TCs [32, 42] is
consistent with previous studies [27, 30, 61, 62]. In addition,
NWP TCs have the highest rain rates at all radii with the
largest rain rate of 5.8m s−1 located at 30 km from TC center
due to stronger TC intensity in NWP than other basins.
After TCs make a landfall, as shown in Figure 1(d), the
rainfall intensity in all basins are significantly reduced if
there is no TC–trough interaction. However, the rain rates
will probably increase when the TCs are embedded in the

Table 1: Landing TC six-hourly samples in different periods over
each basin during 1998–2016.

Basin Off-shore Preland High-PV Low-PV
ATL 364 519 131 321
EPA 252 226 30 43
NWP 1556 1774 465 797
NIO 310 356 68 157
SIO 412 681 187 246
SPA 126 232 59 80
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Figure 1: Mean rain rates for (a) off-shore, (b) preland, and (c) in-land under high-PV environmental condition and (d) in-land under low-
PV condition over different basins.
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environment of upper-level trough systems, which is ben-
eficial to TCs intensification (Figure 1(c)).

3.2. Rainfall Contribution Spectrum. In order to investigate
the evolution of rainfall asymmetry in landfalling TCs over
different basins, we calculated the amplitudes of wave-
numbers 1–5 rainfall components relative to the total am-
plitude of wavenumbers 1–5 components over the annulus
of 30–300 km radii during off-shore, preland, and in-land
under high-PV and low-PV condition. As shown in Figure 2,
in general, the amplitude of axisymmetric component
rainfall was approximately 50% of the total amplitude before
TCs make a landfall, which indicated that the axisymmetric
component could explain about half of the variance of the
total rainfall over global basins. Pei and Jiang [27] (their
Figure 1) found that wavenumber 1 contributes about 40%
of the total precipitation energy for the TCs over the open
ocean by using the TRMM TMI 2A12 dataset. In contrast,
we use TRMM 3B42 dataset with more samples to analyze
the TCs rainfall structure during their landfalling since the
TCs rainfall pattern is becoming more asymmetric as TCs
make a landfall [42].

As TCs approach the coast (preland TCs), the rainfall
magnitude experiences a slight decrease by about 3%, which
is consistent with previous studies [32, 37, 42]. )e con-
tribution from higher wavenumbers to the total rainfall of
preland TCs is slightly higher than that of off-shore TCs.
)is result suggests that dividing the total precipitation into
different mesoscale convective systems breaks down the
rainfall perturbations and creates high wavenumber com-
ponents [27, 32].

After TCs make a landfall, however, the amplitude of
wavenumber 1 rainfall component decreases over all basins,
which is consistent with the result from previous studies
[3, 35]. In addition, wavenumber 1 component of the energy
associated with high-PV condition is higher than that of
preland TCs only in EPA and SIO basins (Figures 2(b) and
2(e)), suggesting that the Rossby wave trough can play an
important role in forcing the TC asymmetric rainfall and
convection [63]. Alternatively, wavenumber 1 component
energy with high-PV condition is higher than that with a
low-PV environment condition over all basins, indicating
that the upper-level trough acts to enhance the rainfall rate
in landfalling TCs by the quasigeostrophic vertical motion
[55]. Of note, in a low-PV environment, the orography-
induced mesoscale convective activities with high (<1)
wavenumber components become pronounced as the TCs
pass over the topography [30, 39, 43].

3.3. Shear-Relative Rainfall Distribution. It has been widely
accepted that environmental vertical wind shear has a sig-
nificant impact on the TC rainfall asymmetric distributions.
Figure 3 presents the composite shear-relative rain rates for
off-shore, preland, and in-land under high-PV and low-PV
environmental conditions. Overall, off-shore, preland, and
in-land TCs have maximum rainfall located in the down-
shear quadrant, indicating that VWS affects the rainfall
distribution during the whole life cycle of a landfalling TC.

)ese general findings are consistent with previous studies
[15, 17, 42, 43]. Moreover, in-land TCs with high-PV have a
maximum rainfall located in the downshear-left quadrant,
while those with low-PV have a maximum rainfall in the
downshear quadrants. In general, in-land TCs under high-
PV condition have a higher rain rate in the inner 200 km
region than that of in-land TCs under low-PV condition.
Previous studies suggested that the contribution of terrains
to the TCs rainfall asymmetries enhancement was relatively
small [32, 42].)is indicates that the upper-tropospheric PV
anomaly can play a role in the rainfall rate maintenance in
landfalling TCs by quasigeostrophic vertical motion, mod-
ulating PV redistribution towards the surface through
diabatic heating [55]. To illustrate the location of maximum
rainfall, Figure 4 shows the composite shear-relative
wavenumber 1 rainfall asymmetry in the four subregions
over global oceanic basins. Remarkably similar to the result
in Figure 3, the maximum wavenumber 1 rainfall rotated
from downshear-left before landfall to downshear after
landfall.

4. Summary and Conclusions

Nineteen years (1998–2016) of TRMM satellite 3B42 rain
rates are employed to examine the shear-relative rainfall
asymmetries of landfalling TCs over global oceanic basins
using the fast Fourier transform (FFT) analysis in this study.
It is found that the wavenumber 1 perturbation is the largest
in the energy spectrum to contribute half of the total per-
turbation energy of total TC rainfall. In contrast, Pei and
Jiang [27] found that wavenumber 1 perturbation con-
tributes about 37% of the total precipitation energy for the
TCs over the open ocean. Our result supports the statistics
that the TC rainfall asymmetry increases when TCs make a
landfall in South China and Southeast United States in the
presence of upper-tropospheric troughs [32, 42]. It is nec-
essary to analyze the effects of upper-tropospheric troughs
on the asymmetric rainfall redistribution during the life
cycle of landfalling TCs in different basins.

To investigate the impact of TC-trough configuration on
the landfalling TC rainfall intensity and distribution, the
landfalling TCs are binned into subregions under high-PV
anomaly and low-PV anomaly environmental conditions. In
general, the azimuthal mean rain rates of landfalling TCs
under the high-PV condition are greater than those under the
low-PV condition. )is result indicates that the upper-tro-
pospheric troughs baroclinic processes tend to play a role in
the rainfall maintenance associated with landfalling TCs.
Besides, our results show that the maximum TC rain rate
tends to be located at the downshear-left (downshear)
quadrant under the high (low)-potential vorticity conditions,
suggesting that the VWS associated with upper-level trough is
the dominant factor in determining the rainfall asymmetry in
landfalling TCs.

It is known that the upper-level trough is an important
environmental cause of TCs circulation enhancement
[56, 59]. )is study investigates the role of upper-tropo-
spheric troughs on the rainfall intensity and distribution
after TCs make a landfall over the six TC-prone basins. )e
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Figure 2: )e amplitudes of wavenumbers 1, 2, 3, 4, and 5 asymmetric components of rain rate relative to the total rain rates over the
annulus from 30 to 300 km from the TC center for (a) ATL, (b) EPA, (c) NWP, (d) NIO, (e) SIO, and (f) SPA basins during the off-shore,
preland, and in-land under high-PV and low-PV conditions.
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Figure 3: )e composite shear-relative rain rate (mm hr−1) for (I) off-shore, (II) preland, (III) in-land with high-PV, and (IV) in-land with
low-PV over (a) ATL, (b) EPA, (c) NWP, (d) NIO, (e) SIO, and (f) SPA.)e shear direction rotated clockwise with 0° pointing to the north.
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Figure 4:)e composite shear-relative wavenumber 1 asymmetry for (I) off-shore, (II) preland, (III) in-land with high-PV, and (IV) in-land
with low-PV over (a) ATL, (b) EPA, (c) NWP, (d) NIO, (e) SIO, and (f) SPA. )e shear direction rotated clockwise with 0° pointing to the
north.
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asymmetric rainfall tends to decrease less if there is an
interaction between TCs and upper-level troughs located at
the upstream of TCs over land. However, one of the limi-
tations of this study is not being able to fully explain the
relationship between TC rainfall and its characteristics
relative to the upper-level trough or other attributable
factors with TRMM data, which can be addressed in the
future when additional data from numerical models or
advanced observing instruments become available.
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